

March 28, 2007

Chuck Campbell, P.E., REM Principal/Senior Engineer GBMc & Associates 219 Brown Lane Bryant, AR 72022

| NPDES          | PERM | IT FILE |       |       |    |
|----------------|------|---------|-------|-------|----|
| NPDES<br>NPDES | #A1  | 2000    | 0     | 792   | >  |
| AFIN #         | 70   |         |       |       |    |
|                |      | -       | mit   |       |    |
|                |      | Corre   | espo  | onden | ce |
|                |      | Techn   |       |       |    |
| 3-2            | 8-07 | SW DO   | ite S | cann  | ed |

RE:

El Dorado Chemical Company – Stormwater Flow Study Report

NPDES Permit No. AR0000752, AFIN 70-00040

Dear Mr. Campbell:

The Department has reviewed the supplemental information submitted in regards to the above mentioned matter. The Department still has concerns about ensuring the water quality of the receiving stream at the requested background flow to effluent flow ratios. The majority of storm events produced lower ratios than those requested in the study. Therefore, in order to fully insure that the water quality is protected, the Deaprtment recommends that one of the following be added to the permit:

#### Option #1

HCR conditions which would only allow a discharge when the effluent flow is less than a set percentage of the flow of the receiving stream;

#### Option #2

Maintain current permit requirements;

#### Option #3

Addition of the following conditions to the permit. The following conditions would only be in effect for November – June since no changes were requested for the months of July thru October.

**Stream Flow Monitoring** 

1. The permittee must monitor the flow upstream of Outfalls 006 and 007 in order to minimize the effects of any water which could enter the receiving stream between the outfalls and the monitoring station. The location of the flow measurements must be approved by ADEQ.

- 2. The permittee shall maintain the approved instream flow monitoring equipment and have the equipment serviced and calibrated on a regular basis. Records shall be kept and available for inspection upon request.
- 3. The permittee shall submit the following information on the monthly DMRs:
  - a. Stream flow;
  - b. Effluent flow;
  - c. Ratio of effluent flow to stream flow;
  - d. Determination if reasonable potential for water quality violations was demonstrated for the metals designated below. An initial determination made be made through a comparison of the effluent flow to measured stream flow and the following trigger ratios:

Outfall 006: minimum of 53.6:1, Cadmium, Lead, Selenium, Silver, and Zinc Outfall 007: minimum of 15:1, Cadmium, Lead, Selenium, Silver, and Zinc If the initial comparision shows that the actual ratio is higher than the trigger ratio, no further action will be required.

- 4. The Department reserves the right to reopen the permit based on information submitted in the quarterly reports. Items which may be modified to reflect stricter limitations included, but are not limited to, the following:
  - Dilution series for chronic biomonitoring;
  - b. Critical dilution for chronic biomonitoring; and
  - c. Metals monitoring and/or numerical limits.

Option #3 is similar to that which was proposed in your letter dated February 26, 2007. Also, it is important to note that the Department has not yet made a final determination regarding which metals may be removed or have revised limits in the future.

If you have any questions, please feel free to contact me at <a href="mailto:shafii@adeq.state.ar.us">shafii@adeq.state.ar.us</a> or call me at (501) 682-0616.

Sincerely,

Mo Shafii

NPDES Permit Branch Manager

Water Division



February 26, 2007

Mr. Mo Shafii Technical Assistance Manager NPDES Permits Branch Arkansas Department of Environmental Quality 8001 National Drive Little Rock, AR 72219

RE:

El Dorado Chemical Company – Permit No. AR0000752 Supplemental Information, Storm Water Flow Study Report

GBM<sup>c</sup> No. 2042-99-010

Dear Mr. Shafii:

Thank you for meeting with Vince Blubaugh, Greg Phillips, and me February 15, 2007 on the above-referenced report dated September 21, 2006. As requested, we are providing additional information to support our findings and recommendations.

Issue No.1: The time presented for flow measurement at 006B on 3/2/2005 conflicts with the field documentation in Appendix C.

Response: The time listed in Table 1 of the report is incorrect. The correct time for the 3/2/2005 flow measurement is 3:50 PM.

Issue No. 2: Please provide the data spreadsheet used to derive the values in Table 3.

Response: The Arkansas Toxicity Screen data sheets for Outfalls 006 and 007 are attached.

Issue No. 3: Propose the method and frequency of flow ratio verification.

Response: EDCC proposes to measure instantaneous flows in Outfalls 006 and 007 using the existing prefabricated flumes, and concurrently determine Background Flow by direct measurement of the unnamed tributary immediately downstream of the confluence of locations 006B and 007B on EDCC property. Background Flow will be determined by the following equation:

Background Flow = Unnamed Tributary Flow – (006 Flow +007 Flow)

Flow ratios for each outfall will be determined by dividing calculated Background Flow by the respective flows measured at the flumes.

EDCC proposes to verify the flow ratios annually during the seasonal (November - June) period for the duration of the permit, and to report those findings to ADEQ no later than July 31 following the end of the period.

Issue No. 4: Please provide example calculations for flows and ratios.



Mr. Shafii February 26, 2007 Page 2 of 2

Response: Explanations of the calculations and examples are attached.

We appreciate the opportunity to submit additional information regarding the EDCC Storm Water Flow Study Report. If you have any questions, please contact Vince Blubaugh or me at 501-847-7077.

Sincerely,

GBM<sup>c</sup> & Associates

Chuck Campbell, PE, REM Principal/Senior Engineer

elimle lylul

CC:

attach Greg Withrow - EDCC

David Sartain – EDCC Brent Parker – EDCC

John Carver – LSB

Loretta Reiber - ADEQ

#### **Arkansas Toxicity Screen**

#### (Evaluated as Dissolved)

| Toxic Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | standa                                                                                                                                                       | Instream Standard. The instream standard for most metals are hardness dependent Stream Concentrations (ug/L). Fo total concentration as single val mean in "total" column(s). For ac "unhide" columns. If multiple datur coefficient of variation (cv), or un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                           | or ge<br>tional<br>can in          | ometric<br>source,<br>put actual                                                          | Calculated Instream Waste Concentration (IWC). This value multiplies the source concentration I (Cd) by the 95th %tile, IWC = ((Cd x 95%tile) x Qd + Cb x Qb) / (Qd + Qb) |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | mstream standard                                                                   |                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------------------|------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Instr                                                                                                                                                        | eam Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Waste Stream Source 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |              |                           | 1, ug/L Background<br>Source, ug/L |                                                                                           |                                                                                                                                                                           | Stream IWC, ug/L                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    | H. Health                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acute                                                                                                                                                        | Chronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H.Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | total c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lissolved       | CV           | 95th%tile                 | total                              | dissolved                                                                                 | Acute                                                                                                                                                                     | Chronic                                   | H. Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                    |                                                            |  |
| ARKANSAS STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | 0.400====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00= 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01            | 0.00         | 0.40                      | 0.00                               | 0.00                                                                                      | 0.08                                                                                                                                                                      | 0.05                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                    |                                                            |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0392651                                                                                                                                                    | 0.43290946<br>68.2114631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00E+101<br>1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24            | 0.60         |                           | 0.00                               |                                                                                           | 0.00                                                                                                                                                                      | 0.00                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                    |                                                            |  |
| Chromium (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210.27632<br>15.712                                                                                                                                          | 10.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00            | 0.60         | 2.13                      | 0.00                               | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                    |                                                            |  |
| Chromium (VI)<br>Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6444951                                                                                                                                                    | 4.17251959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00            | 0.60         |                           | 0.00                               | The state of the state of the state of                                                    | 0.00                                                                                                                                                                      | 0.00                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                    |                                                            |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.678834                                                                                                                                                    | 0.68891879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.13            | 0.60         |                           | 0.00                               | 0.00                                                                                      | 1.11                                                                                                                                                                      | 0.61                                      | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                    |                                                            |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.04                                                                                                                                                         | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00            | 0.60         |                           | 0.00                               | 0.00                                                                                      |                                                                                                                                                                           | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    | - 1                                                        |  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 525.50052                                                                                                                                                    | 58.3610471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00            | 0.60         |                           | 0.00                               | 0.00                                                                                      |                                                                                                                                                                           | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.25            | 0.60         |                           | 0.00                               | 0.00                                                                                      | 1.51<br>0.22                                                                                                                                                              | 0.82<br>0.12                              | 1 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                                                                                    |                                                            |  |
| Silver*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4602153                                                                                                                                                    | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00E+101<br>1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 263.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.61<br>85.57   | 0.60         |                           | 0.00                               |                                                                                           | - 100 CO                                                                                                                              | 100000000000000000000000000000000000000   | 36.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                                    |                                                            |  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.42644<br>22.4                                                                                                                                             | 38.7417734<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      | 110000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                    |                                                            |  |
| Cyanide<br>Beryllium*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00E+101                                                                                                                                                    | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The state of the s |                 | 0.60         | 2.13                      | P. C. S. S. S. S.                  | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| PCBs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00E+101                                                                                                                                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Aldrin*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                            | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00              | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      | 100210210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                    |                                                            |  |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                          | 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| DDT (& metabolites)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.18<br>0.73                                                                                                                                                 | 0.0023<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00E+101<br>0.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60<br>0.60 | 2.13<br>2.13              | D.746 175 Co.                      | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Toxaphene<br>Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4                                                                                                                                                          | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (S11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 0.60         | 2.13                      | T00000000000                       | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Endosulfan*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.22                                                                                                                                                         | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 10000000                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Heptachlor*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.52                                                                                                                                                         | 0.0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 0.00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Hexachlorocyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         | 2.13                      | S223 R23 P3.6                      | 0.00                                                                                      | 0.00                                                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Pentachlorophenol*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.778785                                                                                                                                                    | 7.4357541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.60         |                           |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Chlorpyrifos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.083                                                                                                                                                        | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00              | 0.60         | 2.13                      |                                    | 0.00                                                                                      | 0.00                                                                                                                                                                      | 1 0.557550                                | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                    |                                                            |  |
| Dioxin (2,3,7,8 TCDD)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00E+101<br>1.00E+101                                                                                                                                       | 1.00E+101<br>1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000001<br>0.0373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00              | 0.60         |                           | CONTRACTOR (1975)                  | 0.00                                                                                      | 0.00                                                                                                                                                                      | 207300.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
| Alpha Hexachlorocyclohexane Basis for Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00E+101                                                                                                                                                    | 1.002+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00              | 0.00         | 2.10                      |                                    | 0100                                                                                      |                                                                                                                                                                           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                           |                                    |                                                                                           |                                                                                                                                                                           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                    |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | streams                                                                                                                                                      | lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                           |                                    | TOTAL T                                                                                   | O DISSOLVED                                                                                                                                                               | CORRECTION F.                             | ACTORS AND PARI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIONING                                                             | G COEFFICI                                                                         | ENTS                                                       |  |
| Flow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | streams                                                                                                                                                      | The second secon | Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                           |                                    | TOTAL T                                                                                   | O DISSOLVED                                                                                                                                                               | CORRECTION F                              | Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is | -                                                                   | o COEFFICI<br>Defficients                                                          |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | variation (def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ault)           |              | 0.60                      |                                    | Metal                                                                                     | T                                                                                                                                                                         | tion Factors                              | Partition<br>Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing Co                                                              | efficients<br>Lak                                                                  | ie .                                                       |  |
| Flow:<br>Source 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>0.00                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              | 1.645                     | 5                                  | Metal                                                                                     | T                                                                                                                                                                         |                                           | Partition<br>Stream<br>Kpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | alpha                                                               | efficients<br>Lak<br>Kpo                                                           | e<br>alpha                                                 |  |
| Flow: Source 1 Source 2 Background: 7Q10                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>0.00<br>13.03                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coeffiecent of<br>z for the 95th9<br>Hardness, mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %tile occurren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              | 1.645<br>31.0             | 5                                  | Metal<br>Arsenic                                                                          | Correct<br>acute                                                                                                                                                          | tion Factors<br>chronic                   | Partition<br>Stream<br>Kpo<br>4.80E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alpha                                                               | Lak<br>Kpo<br>4.80E+05                                                             | alpha                                                      |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>0.00<br>13.03<br>15.00                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coeffiecent of<br>z for the 95th%<br>Hardness, mg<br>TSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %tile occurren<br>//L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce              |              | 1.645<br>31.0<br>5.5      | 5                                  | Metal<br>Arsenic<br>Cadmium                                                               | Correct<br>acute                                                                                                                                                          | tion Factors<br>chronic                   | Partition Stream Kpo 4.80E+05 4.00E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alpha<br>-0.73<br>-1.13                                             | Lak<br>Kpo<br>4.80E+05<br>3.52E+06                                                 | alpha<br>-0.73<br>-0.92                                    |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health)                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>0.00<br>13.03<br>15.00<br>4.00                                                                                                                       | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th%<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %tile occurren<br>/L<br>L for Lake or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce<br>Reservoir |              | 1.645<br>31.0             | 5                                  | Metal Arsenic Cadmium Chromium(III                                                        | Correct<br>acute<br>0.993<br>0.316                                                                                                                                        | chronic 0.958                             | Partition Stream Kpo 4.80E+05 4.00E+06 3.36E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alpha<br>-0.73<br>-1.13                                             | Lak<br>Kpo<br>4.80E+05<br>3.52E+06                                                 | alpha                                                      |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute)                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00                                                                                                               | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th%<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %tile occurren<br>//L<br>L for Lake or<br>ge pipe, ft (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5                                  | Metal Arsenic Cadmium Chromium(III Chromium(V                                             | Correct<br>acute                                                                                                                                                          | chronic 0.958 0.860 0.962                 | Partition Stream Kpo 4.80E+05 4.00E+06 3.36E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alpha<br>-0.73<br>-1.13<br>-0.93                                    | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06                                     | alpha<br>-0.73<br>-0.92<br>-0.27                           |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health)                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>0.00<br>13.03<br>15.00<br>4.00                                                                                                                       | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th%<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %tile occurren<br>//L<br>L for Lake or<br>ge pipe, ft (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5      | 5                                  | Metal Arsenic Cadmium Chromium(III                                                        | Correct<br>acute<br>0.993<br>0.316                                                                                                                                        | 0.958<br>0.860<br>0.962                   | Partition Stream Kpo 4.80E+05 4.00E+06 3.36E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alpha<br>-0.73<br>-1.13<br>-0.93                                    | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06             | alpha<br>-0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53          |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute)                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00                                                                                                               | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th?<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischan<br>pH (for pentac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper                                     | Correct<br>acute<br>0.993<br>0.316<br>0.982<br>0.960<br>0.962<br>0.850                                                                                                    | 0.958<br>0.860<br>0.962                   | Partition Stream Kpo 4.80E+05 4.00E+06 3.36E+06 2 1.04E+06 2.80E+06 2.90E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alpha -0.73 -1.13 -0.93 -0.74 -0.8 -1.14                            | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06<br>1.97E+06 | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17                   |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00                                                                                                               | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th?<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischan<br>pH (for pentac<br>Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel                 | Correct<br>acute<br>0.993<br>0.316<br>0.982<br>0.960<br>0.962                                                                                                             | 0.958<br>0.860<br>0.962                   | Partition Stream Kpo 4.80E+05 4.00E+06 3.36E+06 2 1.04E+06 2.80E+06 2.90E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alpha -0.73 -1.13 -0.93 -0.74 -0.8 -1.14                            | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06<br>1.97E+06 | alpha<br>-0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53          |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00                                                                                                               | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coeffiecent of<br>z for the 95th?<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischan<br>pH (for pentac<br>Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium        | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 4.90E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06             | -0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53<br>-1.17<br>-0.76 |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00                                                                                                      | 2.80<br>S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coeffiecent of<br>z for the 95th?<br>Hardness, mg/L<br>S for Stream,<br>Dia. of dischan<br>pH (for pentac<br>Metals:<br>T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00                                                                                                      | 2.80<br>S!)<br>ardness & TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coeffiecent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of dischar pH (for pentac Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium        | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06             | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00                                                                                                      | 2.80<br>s:/)<br>ardness & TS\$<br>TSS 15th%til                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coeffiecent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of dischar pH (for pentac Metals: T for total, D for total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.                                                                                      | 2.80<br>St)<br>ardness & TSS<br>TSS 15th%til<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coeffiecent of z for the 95th% Hardness, mg TSS, mg/L S for Stream, Dia. of discharp H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley                                                                                                                                                                                                                                                                              | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT                                                                                       | 2.80<br>sr)<br>ardness & TSS<br>TSS 15th%til<br>5.5<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coeffiecent of<br>z for the 95th9<br>Hardness, mg/L<br>S for Stream,<br>Dia. of dischan<br>pH (for pentac<br>Metals:<br>T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain                                                                                                                                                                                                                                                              | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT                                                                                       | 2.80<br>ardness & TSS<br>TSS 15th%til<br>5.5<br>2<br>3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coeffiecent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharp H (for pentac Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific 1 Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands                                                                                                                                                                                                                                              | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>25<br>25<br>148                                | 2.80<br>st)  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coefficeent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific 1 Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta                                                                                                                                                                                                                                        | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT                                                                                       | 2.80<br>st)  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coefficeent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams:                                                                                                                                                                                                                               | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>25<br>25<br>148                                | 2.80<br>St)<br>ardness & TSS<br>TSS 15th%til<br>5.5<br>2<br>3<br>1.3<br>2.5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coefficeent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.80E+06 2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific 1 Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta                                                                                                                                                                                                                                        | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNITAL<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81                   | 2.80<br>St)<br>ardness & TSS<br>TSS 15th%til<br>5.5<br>2<br>3<br>1.3<br>2.5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coeffiecent of z for the 95th? Hardness, mg/L S for Stream, Dia. of dischan pH (for pentac Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific 1 Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry                                                                                                                                                           | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT:<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81                    | 2.80<br>ardness & TSS<br>TSS 15th%til<br>5.5<br>2<br>3<br>1.3<br>2.5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficeent of z for the 95th? Hardness, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific \(^1\) Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta  Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry Terry L&D to L&D No. 5                                                                                                                              | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT:<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81                    | 2.80  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 1.1 10.5 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coeffiecent of z for the 95th? Hardness, mg/L S for Stream, Dia. of dischan pH (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry Terry L&D to L&D No. 5 L&D No. 5 to Mouth                                                                                                                 | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H<br>Hardness<br>31<br>25<br>25<br>148<br>81                           | 2.80  St)  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 10.5 8.3 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coeffiecent of z for the 95th? Hardness, mg/L S for Stream, Dia. of dischan pH (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River                                                                                                     | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D | 2.80<br>St)  ardness & TSt TSS 15th%till 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coeffiecent of z for the 95th? Hardness, mg/L S for Stream, Dia. of dischan pH (for pentac Metals: T for total, D for tota | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River                                                                                        | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H<br>Hardness<br>31<br>25<br>25<br>148<br>81                           | 2.80  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coefficeent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River                                                                                                     | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D | 2.80<br>St)  ardness & TSt TSS 15th%till 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coefficeent of z for the 95th, Mardness, mg/L S for Stream, Dia. of discharge H (for pentach Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific 1 Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry 1 Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River                                                                    | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D | 2.80  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 10.5 8.3 9 33 33 2 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coeffiecent of z for the 95th% Hardness, mg/L S for Stream, Dia. of discharp H (for pentac Metals: T for total, D fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry! Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River White River Above Beaver Lake                     | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D       | 2.80  St)  ardness & TSt TSS 15th%till 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33 2 5.5 5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coeffiecent of z for the 95th? Hardness, mg/L S for Stream, Dia. of dischan pH (for pentac Metals: T for total, D for tota | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific \(^1\) Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry \(^1\) Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River White River Above Beaver Lake Bull Shoals to Black River | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D       | 2.80  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33 9 25 5.6 2.5 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coefficeent of z for the 95th? Hardness, mg TSS, mg/L S for Stream, Dia. of discharge H (for pentac Metals: T for total, D | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |
| Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific V Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry! Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River White River Above Beaver Lake                     | 1.00<br>0.00<br>13.03<br>15.00<br>4.00<br>5.00<br>10.00<br>E SAME UNIT.<br>Values for H.<br>Hardness<br>31<br>25<br>25<br>148<br>81<br>125<br>m<br>L&D       | 2.80  ardness & TSS TSS 15th%til 5.5 2 3 1.3 2.5 8 12 10.5 8.3 9 33 33 2.5 3.3 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coefficeent of z for the 95th 95th 95th 95th 95th 97th 95th 97th 97th 97th 97th 97th 97th 97th 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %tile occurren<br>y/L<br>L for Lake or<br>ge pipe, ft (for<br>chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce<br>Reservoir |              | 1.645<br>31.0<br>5.5<br>S | 5 5 5 5 6 5                        | Metal  Arsenic Cadmium Chromium(III Chromium(V Copper Lead Mercury Nickel Selenium Silver | Correct acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998                                                                                                                  | 0.958<br>0.866<br>0.962<br>0.962<br>0.962 | Partition Stream Kpo 4.80E+05 4.00E+06 0.3.36E+06 2.1.04E+06 2.2.90E+06 7.4.90E+05 2.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57 | Lak Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.21E+06 2.40E+06    | alpha -0.73 -0.92 -0.27 -0.9 -0.53 -1.17 -0.76             |  |

#### **Arkansas Toxicity Screen**

### (Evaluated as Dissolved)

| Toxic Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   | Stream Standard. The motivam standard                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ream standard total concentration as single value or geometric mean (IWC). This value multiplies the source concentration (Cd) by the 95th %tile, |                                   |                                         |                                                                                                   |                                                                    |                                                                       |                                                                                                                     | ndard<br>dent<br>dent<br>total concentration as single value or geometric mean<br>in "total" column(s). For additional source, "unhide"<br>columns. If multiple datum, can input actual |                                                                                                |                                                             |  |  | concentration (Cd) by the 95th %tile,<br>IWC = ((Cd x 95%tile) x Qd + Cb x Qb) / |  |  |  | eded.<br>h IWC<br>nding<br>ndard |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|----------------------------------------------------------------------------------|--|--|--|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Instre                                                                                                                                                                                                            | อลm Standard (เ                                                                                                         | ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Waste Stream S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , ug/L                                                                                                                                            | Background<br>Source, ug/L        |                                         | Stream IWC, ug/L                                                                                  |                                                                    |                                                                       | Acute                                                                                                               | Chronic                                                                                                                                                                                 | H. Health                                                                                      |                                                             |  |  |                                                                                  |  |  |  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acute                                                                                                                                                                                                             | Chronic                                                                                                                 | H.Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | total dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cv                                                                                                                                                | 95th%tile                         | total                                   | dissolved                                                                                         | Acute                                                              | Chronic                                                               | H. Health                                                                                                           |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| ARKANSAS STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                   | 0.55                                    |                                                                                                   | 0.45                                                               | 0.00                                                                  | 0.50                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.039265071<br>210.2763157                                                                                                                                                                                        | 0.432909463<br>68.21146306                                                                                              | 1.00E+101<br>1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.90 1.17<br>0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.13<br>0.00                                                       | 0.07                                                                  | 0.50<br>0.00                                                                                                        |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Chromium (III)<br>Chromium (VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.712                                                                                                                                                                                                            | 10.582                                                                                                                  | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE RESERVE OF THE PARTY OF THE | 0.60                                                                                                                                              | 2.13                              | 1870 00000                              | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.644495088                                                                                                                                                                                                       | 4.172519591                                                                                                             | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.67883429                                                                                                                                                                                                       | 0.688918792                                                                                                             | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.96 16.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 2.13                              | 0.00                                    | 0.00                                                                                              | 1.88                                                               | 0.96                                                                  | 7.09                                                                                                                |                                                                                                                                                                                         | С                                                                                              |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.04                                                                                                                                                                                                              | 0.012                                                                                                                   | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 525.500516                                                                                                                                                                                                        | 58.36104712                                                                                                             | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                | 5                                                                                                                       | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.57                                                               | 0.29                                                                  | 2.13                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Silver*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.460215262                                                                                                                                                                                                       | 1.00E+101                                                                                                               | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.00 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60                                                                                                                                              |                                   | 0.00                                    | 0.00                                                                                              | 0.07                                                               | 0.04                                                                  | 0.26                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.42643986                                                                                                                                                                                                       | 38.7417734                                                                                                              | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1710.16 554.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.60                                                                                                                                              |                                   | 0.00                                    |                                                                                                   |                                                                    | 32.22<br>0.00                                                         | 236.73<br>0.00                                                                                                      | A                                                                                                                                                                                       |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.4                                                                                                                                                                                                              | 5.2                                                                                                                     | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Beryllium*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101                                                                                                                                                                                                         | 1.00E+101                                                                                                               | 0.076<br>0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.60                                                                                                                                              | 2.13<br>2.13                      |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| PCBs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00E+101<br>3                                                                                                                                                                                                    | 0.014<br>1.00E+101                                                                                                      | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  |                                                                                                                     |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Aldrin*<br>Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5                                                                                                                                                                                                               | 0.0019                                                                                                                  | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| DDT (& metabolites)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                               | 0.0019                                                                                                                  | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              | 100000000000000000000000000000000000000 | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.18                                                                                                                                                                                                              | 0.0023                                                                                                                  | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  |                                                                                                                     |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.73                                                                                                                                                                                                              | 0.0002                                                                                                                  | 0.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                               | 0.0043                                                                                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Endosulfan*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.22                                                                                                                                                                                                              | 0.056                                                                                                                   | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                | - 1                                                         |  |  |                                                                                  |  |  |  |                                  |
| Heptachlor*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.52                                                                                                                                                                                                              | 0.0038                                                                                                                  | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              | 933                                     | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Hexachlorocyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                 | 0.08                                                                                                                    | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              | 100000000000000000000000000000000000000 | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  |                                                                                                                     |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Pentachlorophenol*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.77878462                                                                                                                                                                                                       | 7.435754097                                                                                                             | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              |                                   | 100000000000000000000000000000000000000 | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  |                                                                                                                     |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.083                                                                                                                                                                                                             | 0.041                                                                                                                   | 1.00E+101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              | 51000                                   | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                   |                                                                                                                         | No. of the contract of the con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                   | H115000000                              |                                                                                                   |                                                                    |                                                                       |                                                                                                                     |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos<br>Dioxin (2,3,7,8 TCDD)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00E+101                                                                                                                                                                                                         | 1.00E+101                                                                                                               | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                              | 2.13                              |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos<br>Dioxin (2,3,7,8 TCDD)*<br>Alpha Hexachlorocyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                         | No. of the contract of the con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60<br>0.60                                                                                                                                      | 1000000                           |                                         | 0.00                                                                                              | 0.00<br>0.00                                                       | 0.00<br>0.00                                                          | 0.00<br>0.00                                                                                                        |                                                                                                                                                                                         |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos<br>Dioxin (2,3,7,8 TCDD)*<br>Alpha Hexachlorocyclohexane<br>Basis for Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00E+101<br>1.00E+101                                                                                                                                                                                            | 1.00E+101<br>1.00E+101                                                                                                  | 0.000001<br>0.0373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                   |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                |                                                                                                                                                                                         | COEFFICIE                                                                                      | NTS                                                         |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00E+101<br>1.00E+101<br>streams                                                                                                                                                                                 | 1.00E+101                                                                                                               | 0.000001<br>0.0373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                   |                                         | 0.00                                                                                              | 0.00                                                               | 0.00                                                                  | 0.00                                                                                                                | TIONING                                                                                                                                                                                 |                                                                                                | NTS                                                         |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00E+101<br>1.00E+101<br>streams<br>1.00                                                                                                                                                                         | 1.00E+101<br>1.00E+101                                                                                                  | 0.000001<br>0.0373<br>Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   | 2.13                              |                                         | 0.00                                                                                              | TO DISSOLVED                                                       | 0.00                                                                  | 0.00 ACTORS AND PARIT                                                                                               | TIONING                                                                                                                                                                                 | pefficients                                                                                    |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams                                                                                                                                                                                 | 1.00E+101<br>1.00E+101                                                                                                  | 0.000001<br>0.0373<br>Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   | 0.60                              |                                         | 0.00                                                                                              | 0.00 TO DISSOLVED Correction                                       | 0.00                                                                  | 0.00 ACTORS AND PARIT                                                                                               | rioning<br>ning Co                                                                                                                                                                      |                                                                                                |                                                             |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00                                                                                                                                                                 | 1.00E+101<br>1.00E+101                                                                                                  | 0.00001<br>0.0373<br>Variables:<br>Coefficeent of<br>z for the 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00<br>0.00<br>f variation (default)<br>%tile occurrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   | 2.13                              |                                         | 0.00                                                                                              | TO DISSOLVED                                                       | 0.00  CORRECTION FA                                                   | 0.00 ACTORS AND PARIT                                                                                               | rioning<br>ning Co                                                                                                                                                                      | oefficients<br>Lak                                                                             | (8                                                          |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams<br>1.00                                                                                                                                                                         | 1.00E+101<br>1.00E+101                                                                                                  | 0.000001 0.0373  Variables:  Coefficeent of z for the 95th's Hardness, mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00<br>0.00<br>f variation (default)<br>%tile occurrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   | 2.13<br>0.60<br>1.645             |                                         | O.00  TOTAL  Metal                                                                                | 0.00 TO DISSOLVED Correction                                       | 0.00  CORRECTION FA                                                   | 0.00 ACTORS AND PARITION Partition Stream Kpo 4.80E+05                                                              | ning Co                                                                                                                                                                                 | oefficients<br>Lak<br>Kpo                                                                      | ke<br>alpha                                                 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19                                                                                                                                                       | 1.00E+101<br>1.00E+101                                                                                                  | 0.000001<br>0.0373<br>Variables:<br>Coefficeent of<br>z for the 95th'<br>Hardness, mg<br>TSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00<br>0.00<br>f variation (default)<br>%tile occurrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   | 0.60<br>1.645<br>31.0             |                                         | O.00  TOTAL  Metal  Arsenic                                                                       | O.00  TO DISSOLVED  Correction acute                               | 0.00  CORRECTION FA  on Factors  chronic                              | O.00 ACTORS AND PARITION Partition Stream Kpo 4.80E+05 4.00E+06                                                     | alpha<br>-0.73                                                                                                                                                                          | Lak<br>Kpo<br>4.80E+05                                                                         | e alpha -0.73                                               |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60                                                                                                                                              | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficient of z for the 95th Hardness, mg TSS, mg/L S for Stream,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>0.00<br>f variation (default)<br>% file occurrence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                              | 0.60<br>1.645<br>31.0<br>5.5      |                                         | O.00  TOTAL  Metal  Arsenic Cadmium                                                               | O.00  TO DISSOLVED  Correction acute  0.993                        | 0.00  CORRECTION FA  on Factors  chronic  0.958                       | 0.00  ACTORS AND PARI' Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06                                               | alpha<br>-0.73                                                                                                                                                                          | Lak<br>Kpo<br>4.80E+05<br>3.52E+06                                                             | alpha<br>-0.73<br>-0.92                                     |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health)                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00                                                                                                                                      | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficient of z for the 95th Hardness, mg TSS, mg/L S for Stream,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 0.00  f variation (default) %tile occurrence j/L L for Lake or Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60                                                                                                                                              | 0.60<br>1.645<br>31.0<br>5.5      |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(Vi                                            | 0.00  TO DISSOLVED  Correctic acute  0.993 0.316 0.982 0.960       | 0.00  CORRECTION FA  on Factors                                       | 0.00 ACTORS AND PARIT Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06                                                | alpha<br>-0.73<br>-1.13<br>-0.93                                                                                                                                                        | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06                                                 | alpha<br>-0.73<br>-0.92<br>-0.27                            |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischail pH (for pental Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead                                | 0.00  TO DISSOLVED  Correctic acute  0.993 0.316 0.982 0.980 0.962 | 0.00  CORRECTION FA on Factors chronic  0.958 0.860 0.962             | 0.00  ACTORS AND PARIT Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06 1.04E+06 2.80E+06                             | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8                                                                                                                                       | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06                         | alpha<br>-0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53           |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute)                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001<br>0.0373<br>Variables:<br>Coeffiecent of<br>z for the 95th/<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1.645<br>31.0<br>5.5<br>S |                                         | O.00  TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury                  | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850         | 0.00  CORRECTION F/ on Factors                                        | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.80E+06  2.90E+06           | alpha -0.73 -1.13 -0.93 -0.74 -0.8 -1.14                                                                                                                                                | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06<br>1.97E+06             | alpha<br>-0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53<br>-1.17  |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischail pH (for pental Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel                 | 0.00  TO DISSOLVED  Correctic acute  0.993 0.316 0.982 0.980 0.962 | 0.00  CORRECTION FA  on Factors                                       | 0.00  ACTORS AND PARIT Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06 1.04E+06 2.80E+06                             | alpha -0.73 -1.13 -0.93 -0.74 -0.8 -1.14                                                                                                                                                | Lak<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06                         | alpha<br>-0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53           |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischail pH (for pental Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Selenium        | 0.00  Correcti acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998    | 0.00  CORRECTION F/ on Factors                                        | 0.00 ACTORS AND PARIT Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06 1.04E+06 2.80E+06 2.90E+06 4.90E+05            | alpha -0.73 -1.13 -0.93 -0.74 -0.8 -1.14 -0.57                                                                                                                                          | Lal<br>Kpo<br>4.80E+05<br>3.52E+06<br>2.17E+06<br>2.85E+06<br>2.04E+06<br>1.97E+06<br>2.21E+06 | -0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53<br>-1.17<br>-0.76  |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischail pH (for pental Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes<br>2.80                                                                                 | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischail pH (for pental Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Selenium        | 0.00  Correcti acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998    | 0.00  CORRECTION F/ on Factors                                        | 0.00 ACTORS AND PARIT Partitio Stream Kpo 4.80E+05 4.00E+06 3.36E+06 1.04E+06 2.80E+06 2.90E+06 4.90E+05            | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.9<br>-0.53<br>-1.17<br>-0.76  |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73                                                                                                                    | 1.00E+101<br>1.00E+101<br>lakes                                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischail pH (for pental Metals: T for total, D for total, D for total, D for the stream of the stream o | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80                                                                         | 0.00001<br>0.0373<br>Variables:<br>Coeffiecent of<br>z for the 95th'<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia. of dischar<br>pH (for pentar<br>Metals:<br>T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE                                                                                                                                                                                                                                                                                                                                                                | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>TSS 15th%tile<br>5.5<br>2<br>3                                       | 0.00001<br>0.0373<br>Variables:<br>Coeffiecent of<br>z for the 95th'<br>Hardness, mg<br>TSS, mg/L<br>S for Stream,<br>Dia, of dischan<br>pH (for pentar<br>Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain                                                                                                                                                                                                                                                             | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischail pH (for pental Metals: T for total, D for total, D for total, D for total of the pental of the | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific \(^1\) Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands                                                                                                                                                                                                                                        | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>TSS 15th%tile<br>5.5<br>2<br>3<br>1.3<br>2.5                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of discharpH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7010 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta                                                                                                                                                                                                                                       | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80                                                                         | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of discharpH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams:                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardness<br>31<br>31<br>25<br>25<br>148<br>81                                      | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>TSS 15th%tile<br>5.5<br>2<br>3<br>1.3<br>2.5<br>8                    | 0.00001 0.0373  Variables:  Coeffiecent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischar pH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River                                                                                                                                                                                                               | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81                             | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>5.5<br>2 3<br>3 1.3<br>2.5<br>8                              | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischail pH (for pental Metals: T for total, D for to | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams:                                                                                                                                                                                                                              | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>TSS 15th%tile<br>5.5<br>2<br>3<br>1.3<br>2.5<br>8                    | 0.00001 0.0373  Variables:  Coeffiecent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischar pH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar                                                                                                                                                                                   | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>5.5<br>2 3<br>3 1.3<br>2.5<br>8                              | 0.00001 0.0373  Variables:  Coeffiecent of z for the 95th Hardness, mg/L S for Stream, Dia. of discharpH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7C10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry N                                                                                                                                                        | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80                         | 0.00001 0.0373  Variables: Coefficeent of z for the 95th' Hardness, mg TSS, mg/L S for Stream, Dia, of dischan ph (for pentar Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dat Dardenelle Dame to Terry I Terry L&D to L&D No. 5                                                                                                                                 | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITS!)                                                                                                  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>2.80<br>1.3<br>2.5<br>8.3<br>1.3<br>2.5<br>8.3               | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischar pH (for pentar Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific \(^1\) Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry \(^1\) Terry L&D to L&D No. 5 L&D No. 5 to Mouth                                                                                                    | 1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>m&D         | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>3 1.3 2.5 8<br>3 1.3 2.5 8<br>8      | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th' Hardness, mg TSS, mg/L S for Stream, Dia. of discharph (for pentar Metals:  T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dan Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River                                                                   | 1.00E+101<br>1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125         | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>3.1.3<br>2.55<br>8.3<br>9.33<br>9.33 | 0.00001 0.0373  Variables: Coefficeent of z for the 95th' Hardness, mg TSS, mg/L S for Stream, Dia of dischan ph. (for pentar Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River Below Caddo River                               | 1.00E+101<br>1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardn<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>m&D  | 1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>2.80<br>3 1.3 2.5 8<br>3 1.3 2.5 8<br>8      | 0.00001 0.0373  Variables: Coefficeent of z for the 95th' Hardness, mg TSS, mg/L S for Stream, Dia of dischan ph. (for pentar Metals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River Below Caddo River White River                   | 1.00E+101<br>1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125         | 1.00E+101<br>1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>5.5<br>2 3<br>3.3<br>2.5<br>8<br>               | 0.00001 0.0373  Variables:  Coefficeent of z for the 95th Hardness, mg/L S for Stream, Dia. of dischail pH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Guif Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry N Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River Below Caddo River White River Above Beaver Lake | 1.00E+101<br>1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>1.8D | 1.00E+101<br>1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>5.5<br>2 3<br>3 1.3<br>2.5<br>8 8<br>           | 0.00001 0.0373  Variables:  Coeffiecent of z for the 95th Hardness, mg TSS, mg/L S for Stream, Dia. of dischar pH (for pental Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |
| Chlorpyrifos Dioxin (2,3,7,8 TCDD)* Alpha Hexachlorocyclohexane Basis for Screen Flow: Source 1 Source 2 Background: 7Q10 Critical LTA (for Human Health) ZID (for Acute) MZ (for Chronic)  (ALL FLOWS NEED TO BE IN THE  Ecoregion and Stream Specific N Gulf Coastal Ouachita Mtns. Arkansas River Valley Boston Mountain Ozark Highlands Delta Streams: Arkansas River Ft. Smith to Dardenelle Dar Dardenelle Dame to Terry I Terry L&D to L&D No. 5 L&D No. 5 to Mouth Red River Ouachita River Above Caddo River Below Caddo River Below Caddo River White River                   | 1.00E+101<br>1.00E+101<br>1.00E+101<br>streams<br>1.00<br>0.00<br>215.19<br>53.60<br>4.00<br>17.87<br>35.73<br>E SAME UNITSI)<br>/alues for Hardr<br>Hardness<br>31<br>31<br>25<br>25<br>148<br>81<br>125<br>1.8D | 1.00E+101<br>1.00E+101<br>1.00E+101<br>lakes<br>2.80<br>2.80<br>2.80<br>5.5<br>2 3<br>3.3<br>2.5<br>8<br>               | 0.00001 0.0373  Variables: Coefficeent of z for the 95th' Hardness, mg TSS, mg/L S for Stream, Dia. of dischan pla. (for pentar Metals: T for total, D f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 0.00  f variation (default) %tile occurrence g/L  L for Lake or Reservoir rge pipe, ft (for lakes, only) chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                                                                                              | 0.60<br>1,645<br>31.0<br>5.5<br>S |                                         | TOTAL  Metal  Arsenic Cadmium Chromium(III Chromium(VI Copper Lead Mercury Nickel Solenium Silver | 0.00  Correctic acute  0.993 0.316 0.982 0.960 0.962 0.850 0.998   | 0.00  CORRECTION F/ on Factors chronic  0.958 0.860 0.962 0.960 0.962 | 0.00  ACTORS AND PARIT  Partitio  Stream  Kpo  4.80E+05  4.00E+06  3.36E+06  1.04E+06  2.90E+06  4.90E+05  2.40E+06 | alpha<br>-0.73<br>-1.13<br>-0.93<br>-0.74<br>-0.8<br>-1.14<br>-0.57                                                                                                                     | Lat Kpo 4.80E+05 3.52E+06 2.17E+06 2.85E+06 2.04E+06 1.97E+06 2.40E+06                         | -0.73<br>-0.92<br>-0.27<br>-0.99<br>-0.53<br>-1.17<br>-0.76 |  |  |                                                                                  |  |  |  |                                  |

## GBM<sup>c</sup> & Associates

219 Brown Lane Bryant, AR 72022 
 Sheet No.
 1
 of
 2

 Date
 2/16/07

 By
 CDC

 Chkd
 MSR
 Date
 2/22/07

 Project No.
 2042-99-010

SUBJECT: Background Flow/Ratio Derivation

Background Flow

Water level measurements from four locations (006, 007, 006B, 007B) were used to derive the background flow conditions for EDCC Outfalls 006/007. The methods and example calculations follow.

The unnamed tributary to Flat Creek is split into two branches near the EDCC property line. The flow monitoring locations selected include storm water from EDCC Outfalls 006 and 007 plus the non-industrial area of the watershed represented by 006B plus 007B. To derive background flow for the receiving stream, the total flow must be measured, then flows from EDCC Outfalls 006 and 007 subtracted. In equation form:

Background Flow = (006B + 007B) - (006 + 007)

Two instruments were installed in the stream to record water levels at 5 minute increments to obtain 006B and 007B flows. Flow/level relationships were determined by direct measurement of flow rates at multiple water levels, then using regression analyses to develop mathematical relationships to predict flow rates for varying observed water levels. The equations to calculate instantaneous flow rates for 006B and 007B are:

006B (cfs) =  $11.286H^3 - 28.13H^2 + 25.05H - 7.2465$ 007B (cfs) =  $0.0856H^{6.9528}$ where H is water level (ft)

Outfalls 006 and 007 are equipped with prefabricated fiberglass flumes. Tables of published flow rates related to water levels in Appendix C were used to establish discharge flows. The table below shows an example of how background flow was estimated, using data from an event that occurred 3/4/05 from 7:09-7:59.

| 006B     | H, ft | CFS  | 007B     | H, ft | CFS   | 006      | H, ft | CFS   | 007      | H, ft  | CFS   |
|----------|-------|------|----------|-------|-------|----------|-------|-------|----------|--------|-------|
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:09     | 0.78  | 0.53 | 7:11     | 0.82  | 0.022 | 7:08     | 0.04  | 0.007 | 7:09     | 0.01   | 0.002 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:14     | 0.78  | 0.53 | 7:16     | 0.82  | 0.022 | 7:13     | 0.04  | 0.007 | 7:14     | 0.01   | 0.002 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:19     | 0.78  | 0.53 | 7:21     | 0.82  | 0.022 | 7:18     | 0.04  | 0.007 | 7:19     | 0.01   | 0.002 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:24     | 0.78  | 0.53 | 7:26     | 0.82  | 0.022 | 7:23     | 0.04  | 0.007 | 7:24     | 0.03   | 0.012 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:29     | 0.78  | 0.53 | 7:31     | 0.83  | 0.023 | 7:28     | 0.04  | 0.007 | 7:29     | 0.07   | 0.050 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:34     | 0.78  | 0.53 | 7:36     | 0.82  | 0.022 | 7:33     | 0.04  | 0.007 | 7:34     | 0.05   | 0.029 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:39     | 0.78  | 0.53 | 7:41     | 0.83  | 0.023 | 7:38     | 0.04  | 0.007 | 7:39     | 0.08   | 0.062 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:44     | 0.78  | 0.53 | 7:46     | 0.82  | 0.022 | 7:43     | 0.04  | 0.007 | 7:44     | 0.12   | 0.119 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:49     | 0.78  | 0.53 | 7:51     | 0.83  | 0.023 | 7:48     | 0.04  | 0.007 | 7:49     | 0.03   | 0.012 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:54     | 0.78  | 0.53 | 7:56     | 0.83  | 0.023 | 7:53     | 0.04  | 0.007 | 7:54     | 0.12   | 0.119 |
| 3/4/2005 |       |      | 3/4/2005 |       |       | 3/4/2005 |       |       | 3/4/2005 |        |       |
| 7:59     | 0.78  | 0.53 | 8:01     | 0.83  | 0.023 | 7:58     | 0.04  | 0.007 | 7:59     | 0.17   | 0.211 |
| 006B I   | EVENT |      | 007B I   | EVENT |       |          |       |       |          |        |       |
|          | SUM   | 5.87 |          | SUM   | 0.246 | 006 EVEN | TSUM  | 0.080 | 007 EVE  | NT SUM | 0.619 |

# GBM<sup>c</sup> & Associates

219 Brown Lane Bryant, AR 72022 
 Sheet No.
 2
 of
 2

 Date
 2/16/07

 By
 CDC

 Chkd
 MSR
 Date
 2/22/07

 Project No.
 2042-99-010

SUBJECT: Background Flow/Ratio Derivation

Using the equation: Background Flow = (006B + 007B) - (006 + 007), Background Flow = (5.87 + 0.246) - (0.080 + 0.619)Background Flow = 5.42 CFS

Background: Outfall Ratio

To analyze the background-to-outfall flow ratios for the study purposes, discharge events first were defined as precipitation-related and resulting in a quantifiable increase in background flow in the receiving stream concurrent with discharge from outfalls 006 and/or 007. Recorded water levels for all four monitoring locations were assessed to identify discrete discharge events, consisting of time periods where outfall 006 and/or 007 was discharging and background flow was greater than or equal to the total 006 + 007 flow. On an event basis, recorded flows were used in the following equation to determine the respective ratios for background to 006 and background to 007 that were representative of the entire discharge event.

BG:006 (event) =  $\Sigma$ BG/ $\Sigma$ 006 (event) BG:007 (event) =  $\Sigma$ BG/ $\Sigma$ 007 (event)

In the following table, the same discharge event shown in the previous section is used to demonstrate individual 5-minute incremental flow rates for the duration of the event. Background Flow has been calculated for each recorded time interval using the method described in the first section. Flow ratios for 006 and 007 are determined using the above equations.

| EDCC<br>Date / Time | CALC<br>BG<br>CFS | 006<br>FLOW<br>CFS | 007<br>FLOW<br>CFS | EVENT<br>NO | EVENT<br>RATIO<br>BG/006 | EVENT<br>RATIO<br>BG/007 |
|---------------------|-------------------|--------------------|--------------------|-------------|--------------------------|--------------------------|
| 3/4/05 7:09         | 0.55              | 0.007              | 0.002              |             |                          |                          |
| 3/4/05 7:14         | 0.55              | 0.007              | 0.002              |             |                          |                          |
| 3/4/05 7:19         | 0.55              | 0.007              | 0.002              |             |                          |                          |
| 3/4/05 7:24         | 0.54              | 0.007              | 0.012              |             |                          |                          |
| 3/4/05 7:29         | 0.50              | 0.007              | 0.050              |             |                          |                          |
| 3/4/05 7:34         | 0.52              | 0.007              | 0.029              |             |                          |                          |
| 3/4/05 7:39         | 0.49              | 0.007              | 0.062              |             |                          |                          |
| 3/4/05 7:44         | 0.43              | 0.007              | 0.119              |             |                          |                          |
| 3/4/05 7:49         | 0.54              | 0.007              | 0.012              |             |                          |                          |
| 3/4/05 7:54         | 0.43              | 0.007              | 0.119              |             |                          |                          |
| 3/4/05 7:59         | 0.34              | 0.007              | 0.211              |             |                          |                          |
| SUM                 | 5.42              | 0.08               | 0.619              | 2           | 67.76                    | 8.76                     |

BG:006 (event) = 5.42/0.08 = 67.76:1 BG:007 (event) = 5.42/0.619 = 8.76:1

This method was used to identify seventy-seven discharge events and determine flow ratios as summarized in Appendix F of the report. In the Appendix F table, only the event summary data is shown. The full data is provided on the compact disk submitted with the report.